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1 Solve the inequality|x | < |5+ 2x |. [3]

2 (i) Show that the equation

log2(x + 5) = 5− log2 x

can be written as a quadratic equation inx. [3]

(ii) Hence solve the equation

log2(x + 5) = 5− log2 x. [2]

3 Solve the equation

cosθ + 4 cos 2θ = 3,

giving all solutions in the interval 0◦ ≤ θ ≤ 180◦. [5]
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The diagram shows a semicircleACB with centreO and radiusr. The tangent atC meetsAB produced
atT. The angleBOC is x radians. The area of the shaded region is equal to the area of the semicircle.

(i) Show thatx satisfies the equation

tanx = x + π. [3]

(ii) Use the iterative formulaxn+1 = tan−1(xn + π) to determinex correct to 2 decimal places. Give
the result of each iteration to 4 decimal places. [3]

5 The parametric equations of a curve are

x = ln(tant), y = sin2t,

where 0< t < 1
2π.

(i) Express
dy
dx

in terms oft. [4]

(ii) Find the equation of the tangent to the curve at the point where x = 0. [3]
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6 A certain curve is such that its gradient at a point(x, y) is proportional toxy. At the point(1, 2) the
gradient is 4.

(i) By setting up and solving a differential equation, show thatthe equation of the curve isy = 2ex2−1.
[7]

(ii) State the gradient of the curve at the point(−1, 2) and sketch the curve. [2]

7 (a) The complex numberu is defined byu =
5

a + 2i
, where the constanta is real.

(i) Expressu in the formx + iy, wherex andy are real. [2]

(ii) Find the value ofa for which arg(u*) = 3
4π, whereu* denotes the complex conjugate ofu.

[3]

(b) On a sketch of an Argand diagram, shade the region whose points represent complex numbersß
which satisfy both the inequalities|ß| < 2 and|ß| < |ß − 2− 2i |. [4]

8 (i) Express
5x − x2

(1+ x)(2+ x2)
in partial fractions. [5]

(ii) Hence obtain the expansion of
5x − x2

(1+ x)(2+ x2)
in ascending powers ofx, up to and including the

term inx3. [5]

9 Two planes have equationsx + 2y − 2ß = 7 and 2x + y + 3ß = 5.

(i) Calculate the acute angle between the planes. [4]

(ii) Find a vector equation for the line of intersection of the planes. [6]
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The diagram shows the curvey = x2e−x.

(i) Show that the area of the shaded region bounded by the curve, the x-axis and the linex = 3 is

equal to 2−
17

e3
. [5]

(ii) Find thex-coordinate of the maximum pointM on the curve. [4]

(iii) Find thex-coordinate of the pointP at which the tangent to the curve passes through the origin.
[2]
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